| Will Dunham |
WASHINGTON (Reuters) – A century ago, Albert Einstein hypothesised the existence of gravitational waves, small ripples in space and time that dash across the universe at the speed of light.
But scientists have been able to find only indirect evidence of their existence. On Thursday, at a news conference called by the US National Science Foundation, researchers may announce at long last direct observations of the elusive waves.
Such a discovery would represent a scientific landmark, opening the door to an entirely new way to observe the cosmos and unlock secrets about the early universe and mysterious objects like black holes and neutron stars.
Scientists from the California Institute of Technology, the Massachusetts Institute of Technology and the LIGO Scientific Collaboration are set to make what they bill as a “status report” on Thursday on the quest to detect gravitational waves. It is widely expected they will announce they have achieved their goal.
“Let’s say this: The first discovery of gravitational waves is a Nobel Prize-winning venture,” said physicist Bruce Allen of the Max Planck Institute for Gravitational Physics in Hannover, Germany.

An artist’s rendering of an outburst on an ultra-magnetic neutron star, also called a magnetar is shown in this handout provided by NASA February 10. REUTERS
“I believe in the next decade, our view of the universe is going to change really quite dramatically,” added Abhay Ashtekar, director of Penn State University’s Institute for Gravitation and the Cosmos.
Einstein in 1916 proposed the existence of these waves as an outgrowth of his ground-breaking general theory of relativity.
“Gravitational waves are literally ripples in the curvature of space-time that are caused by collisions of heavy and compact objects like black holes and neutron stars,” Ashtekar said.
“They’re waves, like light or any other kind of electromagnetic radiation, except here what’s ‘waving’ is space and time itself,” said NASA astrophysicist Ira Thorpe, with the Goddard Space Flight Center in Maryland. “You get radiation, basically light, when you move some sort of charged particle. When you’re moving masses, you get gravitational waves.”
Scientists have been trying to detect them using two large laser instruments in the United States, known together as the Laser Interferometer Gravitational-Wave Observatory (LIGO), as well as another in Italy.
The twin LIGO installations are located roughly 1,800 miles (3,000km) apart in Livingston, Louisiana, and Hanford, Washington. Having two detectors is a way to sift out terrestrial rumblings, such as traffic and earthquakes, from the faint ripples of space itself.
The post Ripple effect: scientists await word on gravitational waves appeared first on Borneo Bulletin Online.